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One~dimensional nonlinear resource allocation problexs have ‘been solved

by the iterative use o* a recurrence relation of the optimal state and

ically two problems, the ailocation of

Hy

decision for the system. Speci

production effort to different faclliitlies 'and a system reliegvility subjec

o

red. The solution of the

e

[V

to & sirngle nonlinear constreint, have conside

first problem is obteined znalytically; however, the solution of the second

one is obtained numerically. The second problem ililusirstes a way of

nh frecuentl;

solving nurwerically a two-points boundary value problem which

occurs wnen the present method is used.
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1. INTRODUCTION

The distribution of effori{ proolem is one in which a limited resource
must be allocated among various activities. Such a éroblem'ariées in meny
situations, and the degree of difficulty of soiution dependslupon the form
of the functions involved. Several people have solved the problem for
specific types of functions. Koapﬁans (S] studied various increszsiag
return functions end devéloped analytic solutions. Tﬁe work ves extended by
Miehle (6) and nurerical methods wvere déveloped for solutions of tahe ad-
ditive return function. Charnes .and Cooper (l) approximated the return
function with plecewise iinear continuous functions so that linear pro-
gramaing could be used. A general algorifhm was deﬁeloped by Karush (h)
where the form of the return function was not restricted. However, hé used

a2 piecewise continuous lirear approximation. Finally Shapiro znd Wagner

Y

-(7) solved the problem where the retwran function and the allocation function

- AL »

were both nonlirear and either convex or concave functions
Tne present paper presents a fairly generzl approach to ithe distribution
of effori provlem with no resirictions on the return and allocaticn functions.

Two problers, the allocation of production effort to different facilities

end a sysiem reliability subject to a nonlinear constraint, are studied.



2. RECURRENCE EQUATION FOR ONE-DIMEESIONAL RESOURCE AALOC 0N SYSTEAS

Suppose that a resource is to be allocated to N different activities,

Also suppose that the objective is to maximize the total return from all

the activities. If each activity is considered as a stage the resource

allocation problem can be formulated as a multistage decision process as

shown in Fig. 1. Let the allocation of a quantity R of the resource to the

nth activity (stage) be 6" end the return resulting from this allocaiion

nl n)’

be G7(x where the state varizble xn is defined as

1

' 3

- . #*
=P ey, n=1,2,....0N, (1)

"
!

1

o
i

1 = Ry (12)

ol
fl

, = 0. (1v)

-In genereal, the objective function to be maximized is the sum of the

+

return function over all stages of the system such as Z G" ( 2 l,e”).
If a new state veriable is defined to satisfy ned |
'xg =~k2'l + Gp(xg‘l;en), n=1,2,...,N, (2
xg = 0, (2a)
it can be shown that
§ Gn(zp—l;an) = xN . (?)

n=1 1

e superscript n indicates the stage number. Tne exponents are wriii
with parenthesis or brackeis as (xp)Z or [GR(x0"1 en)J2 .
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Thus the optimization problem of & one-dimensional resource a2llocation
‘ R . n
system can be formulated as a problem in which a set of 67, n =1, 2, ...,N,

. : - .. N .
is to be chosen to meximize x2 wvnere

5 = x, (L)

for a system described by equations (1) and {(2).
It can be shown by a variety of means that the necessary (but not suf-
ficient) condition for unconstrained local optimality can have the followirng

recurrence representation (2,3).

n oy t
3G“(x§ =:9") . aGn+l(x§;8nTl)

3 : 1
Iy Lo+ a7 (0% ag™ (R 56R)
- = = ~ = - (5)
o=l .n ol on,  ntl n n ? -
TG TeT) e (w567 ) o) ox) .
36" 3™t

n=1,2, ..., N~1 .

. N . N ‘ . . - s
With x given, 8" can be computed from equetion (1) by assigning &

N-1 X . 0 . v s .
value of xl . The corresponding value for x, is obtained by iterative

utilization of equations (1) and (5). The result is directly coxpared with

. 0 : . 5 . .0 .
the given X5 The procedure 1s repeated untlil the computed value of x. is

equel to the given value of xg. It is worth noting that for each assigned

N-2 s -
velue of xl s the corresponding value of 6n, n=1,2, ..., N, calculated
e the optimel control actions corresponding to the initiel condition

ar
N e ‘ . .
xl compuied in each run of trall celculations.



3. ~ALLOCATION OF PRODUCTION EFFORT TO DIFFERENT FACILITIES

A company nust operate efficlently to succeed, and consequently, the

availeble resources must be alloczied so that its measure of efficiencs
v

e

s optimized. The resources and measure of success are usually the
facilities and cost respectively. For a compeny with N production fecilities
] r

vhich produce a single product, let n be the index for the appropriztie

v N o . n .
facility and y its volume of output. The cost of producing y~ at each

n, n n nn n, n,2 '
TC(y)=a +oy +cly) (6)
n .n n s
where 27, b, and ¢ are positive constants.
The firm must produce exactly s units per time period and desires to

split this production load between the N facilities so es to xinimize

the total product cost.

SOLUTION. Let each producticn facility represent a stage, and let

n

6 yn = volume of output at the n-th siage (n~th production

L

facility),

.

volume of product which remeins to be produced in (E-n) re-

o)
it

meining stages,

total cost of production up to and including the n-th stage

NH
H

(production facility) where cost for the n—th.stage is
oc®(67) = &P + bR + Pe™)? . (1)

Then the process may be described by the following itwo performence equations.

n_.nl_ n 0 N (8)



X, = xg~l + [ + ™ (6%) + " ,(.en)zl, % = 0, (9)

Comparing equations (8) and (9) with the performance equetions, equations

(1) ang (2), we find

My n-l o ony o n-l n

T (xl ;0) = X T -6, (x0)
n, n—-1 n n n, . n n, n.a )
G(x; 56 ) =a +b () +c (o) . (11)

Teking pertial derivatives of equations (10) and (11) with respect to

n-1 n e A .
xl and 67 respectively, we obtain
BTn(xi_l;ﬁn)
axl
ng(x§~l;en) .
" = <1, (13)
o8
acn(xi"l;en) :
=0, (1%)
axl
ané
-l n
aGp xl 367) n n,.n
o =b + 2 c¢c(87). (15)
28

Substituting equations (12) through (15) into the recurrence equation,
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c v - \
87 = v K. (22)
2 c ¢

Once the decision varistles Ffor zll stacs

calewlate x. iteratively as follows. From equations (8) and (17):

|
AY
*

1t

by
oS
o

]

P N T (23)
(o]

#

’

]

.’.
@D
».

v . C . ¢ 1. B - R
= PSS e + -~ - = - L] .
[ T -2 Kl + [ o N1 N o -2 . (2%)

- ; n
0 .. N v 1 . - 0 \ -
x, =X A I« n /0 (25)
n=l ¢ n=l 2 ¢
A£S XI5, We can write

e

:’\C
0
L3
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fl t~
I
3]
| I——
EX
11t~ 1
™~
[e)



N-1 bﬁ .bn
- \
s - 3 ( -
- - ¥y
. AN r=1 2c 1
FASEE=I v = Py e .
N N
,z l c
- n
i =1 ¢

Equatiozns (26) and (27) give a corplete seguence of decis

Let
N1 \
N-1 bh _ bn
s - ]
n;l 2 ¢ = A .
Ry |
n=l cn

Suvstituting equation (29) into equation (20) gives

Sy inucvicn, it may te concluded that

-

waere £ is given by ecuation (28).

(27)

. . n
ion verigdle 673

(29)

(29)

(30)

(31)



It is worth mentioning thet meny problems of resource allocatlon beleng
to this class where the retﬁrn function (cost or profii) is é adralic forn
es given by équ"tion (11). It is obvious that the return function will be
concave or convex if c” is positive or negative, and accordingly the stationary
point of the function gives a minimum or a maximum, Therefore, the re-
currence equation gﬁveq by equation (5) can be Lsed if end on ly iT the
objective function is minimized (or maximized) when ® of the return function
given by equation (11) is positive (or negative). In other words, equation
(5) gives the necessary con dition of the optimality. This means that a
policy or decision determined by use of ¢quation (5) is not necessarily
an optimal polﬁcy. Equation (5) only provides "a cendidate or cendidates"

for the optimal policy. In general, the second order variation of the

o]
O
(4
4
[#]
ck
}.J
P
(6]
-,
(£
ct
Foe

on a*ound the candidate policy must be exanined in order
to determine if it is indeed the optimal poliecy. It is very difficult,
if not impossib e, to do so for any sort of a2 complex discrete systen and

]
we often have to resort to simulation or nuzerical search around the

L, SYSTEM RELIABILITY SUBJECT TO 4 SINGLE NONLINEAR CONSTRAINT

Consider a system with N-steges in series, each stage having sozs re-

~

dundant tnits connected in parallel as shown in Fig. 2. The total nuzbex

(o]

? wits at each stage is subject to a separable non-linear counsiraint. The
problem is to maximize the systen reliability under this constraint.
Let us consider the constraint of the type [8],

ny - N n, .n,2
g(e ) = z p (6 ) f.P:y
. n=1



n . . \ . n . ) .
where p~ is constentv for the nth stage and 6 1s the nuxber of elements

at the nth stage, therefore, number of redundancies employed at the nth

i

. n . " . . . . '
stege is (6 - 1). An interpretation of this constraint is as follows

p7(6™)% = (P (™),

where
no_ .. . v .
w = weight per element et the nth stage and, therefore,
n.n . . . . . .
(w6") will be the total weight of the nth stage,
n )
¢ = cost per element &t the nth stage and, therefore,

(c®6™) will be the cost of the nth stage.

n nn
p = cv .

We define
n , . ) . .
xl = amouwnt of constraint left over after allocating first.

n stages,

X, = logarithn of the reliabiliiy upto and including first n
: n s M

. i

stages = &n 7w (1 - (-R°) ) ,
i=1

sere () sttty of the i components fn parelle
vaere (1-R7) is the unreliability of the components in parallel and
each corponents has the reliability of R* at the ith stage.

This N-stage system can now be presented by the following performance

equations.

%) ='x§'l - %e™M3,  n=1,2,. S F (z2)
xg = P, (322)
% >0, (320)

n_ .n=1 n,0
X, = %,  + &n (l - (1 -R") ), n

i
]

1, 2, ...,N, (33)
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X, = 0. ‘(33a)’

The objective function to be meximized is given by

N e N
s= ) m(1-0Q-8))=x. (34)
n=l

This corresponds to the logarithm of the meximum reliebility.

v

Comparing equations (32) and (33) with equations (1) and (2)

respectively, we have

-1 A - ’ pe -
Tn( n~-X n) _ .n-1 1(en)2

Xy ,07) = X, T -p , (35$
Gpt n-1, ‘ _ n en
x 307) = en (1~ (2R ) . (36)

Teking partial derivatives of equations (35) and (36) with respect to

Nl .. . ar s
xl and O respectively, we obtain

3Tn(x§_l;en)

1!
3

7 = —29 e s (BTb)

=0, (37¢)

1 ot
acn(xi" ;67)  —(1-R™M)Y  an(2-r%)
— = . (374)
26" n o2
1 - (1-r")

Svbstituting equations (37z) through (37d) into the recurrence equation,

equevion (5), gives



n +1 ,

() (™ W
n n+l

- wWH¥) 1 - (®He )

= +1 n+l
_2pnen —ppB¥ign

n . . . . s
where U° = 1 - R°, Rearranging the terms, this equation yielés

. n+l .
GBHL | (# + en+l) (Unvl)e (38)

where

n
n +1 9
n o 22 U1 - (UR) n
= ]
A = [ I je .
n+l Un n
p n (Un)e
Nos . P . - TN : . o
ote that all terms of A7 are known if 8 is known. Therefore equation
(38) can be solved by Newton's method. Also note that, while 6, n = 1, 2,

. . . e s co s n
+ o « 3 N a2re in reality positive integers it is assumed that § eare con-

tinuous varigbles in obtaining the 2bove recurrence relation. Tae zbove

(13

quetion mey be writien es
n+l

n+l) n+l

+1
= o™ L (4P« &0

(e =0 , (39)

)l . . . . n+l .
As Ur is less than cre, it can be seen that £(8 ) will be & mono~

en-i-l 1

o . . - . A n+
terically increasing function of . At B

, . n+l
= 0 we find that £(6~ )}
. . : - Loe antl o ~ ars s
is negstive. As we inerease the valus of © » the value of this function

. ) . . - n+l .
increases. Therefore, starting from a negative value, £{6 ~) will pess

throuzh zero and then becoxze positive. The stepwise procedure is given
o

COMPUTATIONAL PROCEDURE
. 1
Step 1. Assume 87 = 1, and n = 1.

n+l . n+ly . . . :
Step 2, Assumz (8 )l = 1, where (6 ), is the first trial solution of

L
equation (39).



Step 3.

Step k.

Step 5.

Step 6.

tep T.

Step 8.

. s o+
this is not satisfied go to step 4 with the new value of @ .

13

Compute An.

Compute
. o ; ken+l)
+1 +1 +1 Cront
(6™, = (™ - (4%« (") W T,
and
: : n+l (en-i-l'
(O TR (o IR (i W oo 10" s R ™ B
(L0)
Compute a new trial value for 6n+l from following equation
.. n+l
(%), = (7). - £(te™),)
4 2 1 ' (1 o0F1 *
£ ((6%%)))
Check if
n+l n+l
(E.) will depend on the accuracy of the resuli desired. If

R 'max

"
this is setisfied consider that (8" l)2

is an optimum solution

corresponding to the assumed value of 61, go to step 7, if
1

that is, replacing (6n+l)l by (6n+l)2 .

Increase n by one and go to step 2 until n becomes greater than

N; wher n becomes greater than N go to step 8.

Compute

N
A=p- ] oM.
’ r=]1

This give rise to cune of the fcllowing conditions. (a) x§ is

reater than zero, (b) equal to zero and (c) less than zero.



tep 9.

tep 10.

£ it is (&), go to step 9, if.it is (b), we have an optimel
solution, round off the solution to integers, if it is (ec), go
to step 10.

1 . '
Increment 87 by one, meke n = 1 agein and go back to step 3.

. . \1
Reduce 61 by 0.1, make n = 1 again and go to step 3 until xﬁ

. N, . ‘
again becomes greater than zero., Vhen * is greater than zero

1k

the solution is c¢ptimal one. Round off the solution to an integer.

The procedures are illustrated in the flow chart (Fig. 3).

NUMERICAL EXAMPLE

An eight stage problem is solved for illustration. However, the

nunerical method developed are for any system with an arbitrary number

of stages.

The constants employed for this illustrative problem are given in

Tadble 1.

The optimum redundancy obtained is as follows.
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kb

Tehie 1. Constants assigned for 8 sta

n R p P
1 .85 5.00
2 95 8.00
15 2.00
) .55 1.00
b © .60 | 7.00
6 65 3.00
7 .70 k.00
8

- .80 5.00
) 300
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3

o
it

5,

1
W

68=3n

‘Since 6" repfesents thé nunber of elements at each stage, the number of
rédﬁndant units at each stage is obtained by subtracting one from each of
tﬁem.

Here we note that 287 units out of 300 units of resouice is used waich
gives the optimum reliability of 0.838L. Results of numerical simulation

indicates the above result is not significantly different from the truly

optimel one.
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